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The paper presents a fast method to compute wound rotor induction machines in steady state. Coupled time-harmonic FE-circuit 

equations are used under a first space harmonic approximation for the air-gap magnetic field. It is shown that only 4 magnetostatic FE 

computations are necessary to compute the machine performances for a wide range of operating speeds. The performances comparison 

to a conventional complex magnetodynamic FE analysis shows the effectiveness of the proposed approach. 
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I. INTRODUCTION 

OUND rotor induction machines (WRIM) are nowadays 

widely used in wind turbines as well as in flywheels, 

pumps and fans systems. Indeed, the doubly fed configuration 

(DFIM or DFIG) of WRIM is well known for its outstanding 

variable speed capability, adjustable power factor and reduced 

converter rating [1]. The design of WRIM can be done using a 

variety of methods. The concepts of electric and magnetic 

loadings together with manufacturers past experience allows 

an initial sizing of the machine [2]. Then, a precise finite 

element (FE) analysis is carried out in a final design stage [1]-

[2]. Unfortunately, the exclusive use of finite elements in the 

design process of induction machines leads to a very long 

computation time. 

We propose in this paper an approach based on FE-circuit 

analysis that allows a fast and precise computation of WRIM 

performances in steady state. The magnetic field is truncated 

so only the principal air-gap space harmonics are considered. 

A similar approach has been successfully used for the 

computation of squirrel-cage induction motors [3]-[5]. A FE 

computation is needed for each value of the slip frequency in 

the rotor bars. In this paper, it will be shown that only four FE 

magnetostatic computations are necessary to determine the 

WRIM performances for a wide range of speed operation.  

II. THE ELECTROMAGNETIC MODEL 

A magnetic vector potential formulation is used under the 

usual plane 2D approximation. The background of the 

electromagnetic model is the same as the one described in [5]-

[6] for squirrel cage induction motors. The machine is split 

into two domains of resolution noted Ds and Dr, Fig.1. Both 

domains include the air-gap domain Dg. The ferromagnetic 

materials are considered linear. However, the method can also 

consider the magnetic saturation in an averaging sense [6]. 

We assume that the machine is supplied from a balanced 

three-phase sinusoidal system of currents and only one time 

pulsation is present in the source currents. By considering that 

only the first space harmonic of p pole-pairs exists in the air 

gap, the vector potential is expressed as follows 

 

      
Fig. 1. Stator (Ds) and rotor (Dr) domains 

 

𝑎𝑠(𝑃, 𝑡) = √2𝑅𝑒[(𝑋𝑠(𝑃) + 𝐶𝑠. 𝐴𝑠(𝑃)) exp(𝑗𝜔𝑠𝑡)]    𝑖𝑛 𝐷𝑠 

 

𝑎𝑟(𝑃′, 𝑡) = √2𝑅𝑒[(𝑋𝑟(𝑃′) + 𝐶𝑟 . 𝐴𝑟(𝑃′)) exp(𝑗𝜔𝑟𝑡)]  𝑖𝑛 𝐷𝑟 

(1) 

 

(2) 

Where 𝜔𝑠 and 𝜔𝑟 are the electrical pulsations in the stator and 

the rotor domains, respectively. 𝑋 and 𝐴 are complex 

elementary vector potentials (the indices r and s stand 

respectively for rotor and stator). P and P’ are points defined in 

polar coordinate systems attached to the stator and the rotor 

domains such as 𝜃 = 𝜃′ + Ω𝑡 (𝛺 is the rotor velocity). 

In addition to (1) and (2), 𝑎𝑠 and 𝑎𝑟  must coincide everywhere 

in the air-gap. To do so, it is sufficient to ensure the following 

continuity relations in Dg 

{
𝑎𝑠(𝑅𝑠, 𝜃, 𝑡) = 𝑎𝑟(𝑅𝑠, 𝜃′, 𝑡)     𝑜𝑛 Γ𝑠

 𝑎𝑠(𝑅𝑟 , 𝜃, 𝑡) = 𝑎𝑟(𝑅𝑟 , 𝜃′, 𝑡)    𝑜𝑛 Γ𝑟
 (3) 

Indeed, 𝑎𝑠 and 𝑎𝑟  are harmonic functions in the air-gap (they 

are solution of the Laplace equation) so their equality on the 

air-gap boundaries Γ𝑠 and Γ𝑟 allows their coincidence 

everywhere in the air-gap. Furthermore, this paper will 

consider only the principal p pole-pairs space harmonic in the 

air-gap. In steady state operation, 𝜔𝑠 = 𝑝𝛺+𝜔𝑟  and the slip is 

𝑠 = (𝜔𝑠 − pΩ)/𝜔𝑠 =𝜔𝑟/𝜔𝑠. In classical WRIM, 𝜔𝑟 is due to 

the induced currents in the short-circuited rotor windings. In 

DFIM or DFIG, 𝜔𝑟 is imposed by an external rotor ac supply. 

The complex constants 𝐶𝑠 and 𝐶𝑟 correspond to the Fourier 

series coefficients of the first space harmonic (p pole-pairs) of 

the vector potentials in the air-gap. The aim here is to 

determine these coefficients together with the elementary 

vector potentials 𝑋 and 𝐴 to get the solution using (1) and (2). 
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A. Computation of  𝑋𝑠 and  𝐴𝑠 

𝑋s corresponds to the source problem. The stator windings are 

supplied by a unity 3-phase current. We set 𝑋s = 0 on Γ𝑟 and 

Γ𝑒𝑥𝑡. We solve by FE the Laplace (in the iron parts and the air-

gap) and Poisson (in the slots) partial differential equations 

(PDEs). Then we compute the p
th

 harmonic Fourier coefficient 

noted 𝜇𝑠 on Γ𝑠. We also compute the magnetic flux noted 𝜑sX 

in phase 1 for example (the choice of the phase is arbitrary). 

 

𝐴s corresponds to the rotor armature reaction. The 3-phase 

stator windings are not supplied. 𝐴s = 0 on Γ𝑒𝑥𝑡 and  𝐴s =
exp (𝑗𝑝𝜃) on Γ𝑟  We solve by FE the Laplace PDEs (iron parts, 

slots and air-gap). Then we compute the p
th

 harmonic Fourier 

coefficient noted 𝜆𝑠 on Γ𝑠. We also compute the magnetic flux 

noted 𝜑sA in phase 1. 

B. Computation of  𝑋𝑟 and  𝐴𝑟 

The rotor windings are supplied by a unity 3-phase current. 

We set 𝑋r = 0 on Γ𝑠. We solve by FE the Laplace (iron parts 

and air-gap) and Poisson (slots) PDEs. Then we compute the 

p
th

 harmonic Fourier coefficient noted 𝜇𝑟 on Γ𝑟. We also 

compute the magnetic flux noted 𝜑rX of phase 1. 

 

The 3-phase rotor windings are not supplied. We set 𝐴r =
exp (𝑗𝑝𝜃′) on Γ𝑠  We solve by FE the Laplace PDEs (iron 

parts, slots and air-gap). Then we compute the p
th

 harmonic 

Fourier coefficient noted 𝜆𝑟0 on Γ𝑟. We also compute the 

magnetic flux noted 𝜑rA of phase 1. 

C. Computation of 𝐶𝑠 and  𝐶𝑟 

The first step is to calculate the effective rotor current since its 

value was assumed unity when computing  Xr. To do so, we 

use the rotor phase circuit equation 

𝑉𝑟 = (𝑟𝑟 + 𝑗𝜔𝑟𝑙𝑟𝑒𝑤)𝐼𝑟 + 𝑗𝜔𝑟(𝜑rA + 𝐼𝑟 . 𝜑rX) (4) 

𝑉𝑟  is the phase rotor voltage (equals to 0 in usual short-

circuited rotor windings), 𝑟𝑟  and 𝑙𝑟𝑒𝑤  are the rotor phase 

resistance and end-winding phase inductance, respectively. 

The actual vector potential 𝑋r (and also all the quantities 

related to it) are obtained by multiplying the one computed for 

unity rotor current by 𝐼𝑟  computed using (4). 

Hence, the actual Fourier coefficient for the whole rotor 

problem (superposition of 𝑋𝑟 and 𝐴𝑟) is then written as 

𝜆𝑟 = 𝜆𝑟0 +𝐼𝑟 . 𝜇𝑟. 

Now, we are able to compute  𝐶𝑠 and 𝐶𝑟 using (3). This leads 

to solve the following two algebraic complex equations 

{
𝐶𝑟 − 𝜆𝑠. 𝐶𝑠 = 𝜇𝑠

𝜆𝑟 . 𝐶𝑟 − 𝐶𝑠 = 0
 (5) 

The stator being usually supplied by a voltage source rather 

than by a current source, the stator current of the machine is 

then obtained via the stator phase circuit equation as follows 

𝐼𝑠 = 𝑉𝑠/(𝑟𝑠 + 𝑗𝜔𝑠𝑙𝑠𝑒𝑤 + 𝑍) (6) 

Where 𝑍 = 𝑗𝜔𝑠(𝜑sX + 𝐶𝑠. 𝜑sA) is the operational impedance 

of the machine (obtained with the unitary stator current), 𝑟𝑠 

and 𝑙𝑠𝑒𝑤  are the stator phase resistance and end-winding phase 

inductance, respectively. 

It is clear that only 4 FE complex-magnetostatic computations 

are required to have the solution for any slip value (the slip 

only appears in the rotor circuit equation (4)). 

III. APPLICATION EXAMPLE 

The proposed method has been tested on a short-circuited 

rotor WRIM rated at 100 kW, 50Hz, 400 V delta and p=3. The 

nominal speed is 980 rpm (s=2%). 

Fig.2. shows the computed electromagnetic torque and per 

phase rms stator current for s=0:0.1. It can be seen that the 

obtained results are in good agreement with those obtained 

using a full time-harmonic FE model of the whole machine. 

For higher slip values, this concordance is not so good because 

of the influence of higher space harmonics. These issues as 

well as the saturation effect will be discussed in the full 

version of the paper.  

The overall computation time is about 6s using the proposed 

method (4 FE computations). For the full time-harmonic 

model, the computation time for 11 slip values is about 25s.    

 

 
Fig. 2. Torque and stator current vs. slip curves 

IV. CONCLUSION 

The presented method, based on the first space harmonic 

approximation and coupled FE-circuit equations of WRIM, is 

very fast and accurate at nominal operation. The consideration 

of higher space harmonics and the magnetic saturation will 

improve the method so as to constitute a robust an accurate 

tool for WRIM modeling and optimization.  
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